Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
WIREs Mech Dis ; 14(3): e1547, 2022 05.
Article in English | MEDLINE | ID: covidwho-20232939

ABSTRACT

Gustation or the sense of taste is a primary sense, which functions as a gatekeeper for substances that enter the body. Animals, including humans, ingest foods that contain appetitive taste stimuli, including those that have sweet, moderately salty and umami (glutamate) components, and tend to avoid bitter-tasting items, as many bitter compounds are toxic. Taste is mediated by clusters of heterogeneous taste receptors cells (TRCs) organized as taste buds on the tongue, and these convey taste information from the oral cavity to higher order brain centers via the gustatory sensory neurons of the seventh and ninth cranial ganglia. One remarkable aspect of taste is that taste perception is mostly uninterrupted throughout life yet TRCs within buds are constantly renewed; every 1-2 months all taste cells have been steadily replaced. In the past decades we have learned a substantial amount about the cellular and molecular regulation of taste bud cell renewal, and how taste buds are initially established during embryogenesis. Here I review more recent findings pertaining to taste development and regeneration, as well as discuss potential mechanisms underlying taste dysfunction that often occurs with disease or its treatment. This article is categorized under: Infectious Diseases > Stem Cells and Development Cancer > Stem Cells and Development Neurological Diseases > Stem Cells and Development.


Subject(s)
Taste Buds , Taste , Animals , Stem Cells , Taste/physiology , Taste Buds/physiology , Taste Perception , Tongue
2.
Med Microbiol Immunol ; 2022 Jun 04.
Article in English | MEDLINE | ID: covidwho-2293557

ABSTRACT

The emergence of SARS-CoV-2, the severe acute respiratory syndrome coronavirus type 2 causing the COVID-19 pandemic, resulted in a major necessity for scientific countermeasures. Investigations revealing the exact mechanisms of the SARS-CoV-2 pathogenesis provide the basis for the development of therapeutic measures and protective vaccines against COVID-19. Animal models are inevitable for infection and pre-clinical vaccination studies as well as therapeutic testing. A well-suited animal model, mimicking the pathology seen in human COVID-19 patients, is an important basis for these investigations. Several animal models were already used during SARS-CoV-2 studies with different clinical outcomes after SARS-CoV-2 infection. Here, we give an overview of different animal models used in SARS-CoV-2 infection studies with a focus on the mouse model. Mice provide a well-established animal model for laboratory use and several different mouse models have been generated and are being used in SARS-CoV-2 studies. Furthermore, the analysis of SARS-CoV-2-specific T cells during infection and in vaccination studies in mice is highlighted.

3.
J Inflamm (Lond) ; 20(1): 6, 2023 Feb 21.
Article in English | MEDLINE | ID: covidwho-2282014

ABSTRACT

BACKGROUND: Lower respiratory infections caused by ssRNA viruses are a major health burden globally. Translational mouse models are a valuable tool for medical research, including research on respiratory viral infections. In in vivo mouse models, synthetic dsRNA can be used as a surrogate for ssRNA virus replication. However, studies investigating how genetic background of mice impacts the murine lung inflammatory response to dsRNA is lacking. Hence, we have compared lung immunological responses of BALB/c, C57Bl/6N and C57Bl/6J mice to synthetic dsRNA. METHODS: dsRNA was administered intranasally to BALB/c, C57Bl/6N and C57Bl/6J mice once/day for three consecutive days. Lactate dehydrogenase (LDH) activity, inflammatory cells, and total protein concentration were analyzed in bronchoalveolar lavage fluid (BALF). Pattern recognition receptors levels (TLR3, MDA5 and RIG-I) were measured in lung homogenates using RT-qPCR and western blot. Gene expression of IFN-ß, TNF-α, IL-1ß and CXCL1 was assessed in lung homogenates by RT-qPCR. ELISA was used to analyze protein concentrations of CXCL1 and IL-1ß in BALF and lung homogenates. RESULTS: BALB/c and C57Bl/6J mice showed infiltration of neutrophils to the lung, and an increase in total protein concentration and LDH activity in response to dsRNA administration. Only modest increases in these parameters were observed for C57Bl/6N mice. Similarly, dsRNA administration evoked an upregulation of MDA5 and RIG-I gene and protein expression in BALB/c and C57Bl/6J, but not C57Bl/6N, mice. Further, dsRNA provoked an increase in gene expression of TNF-α in BALB/c and C57Bl/6J mice, IL-1ß only in C57Bl/6N mice and CXCL1 exclusively in BALB/c mice. BALF levels of CXCL1 and IL-1ß were increased in BALB/c and C57Bl/6J mice in response to dsRNA, whereas the response of C57Bl/6N was blunt. Overall, inter-strain comparisons of the lung reactivity to dsRNA revealed that BALB/c, followed by C57Bl/6J, had the most pronounced respiratory inflammatory responses, while the responses of C57Bl/6N mice were attenuated. CONCLUSIONS: We report clear differences of the lung innate inflammatory response to dsRNA between BALB/c, C57Bl/6J and C57Bl/6N mice. Of particular note, the highlighted differences in the inflammatory response of C57Bl/6J and C57Bl/6N substrains underscore the value of strain selection in mouse models of respiratory viral infections.

4.
JCI Insight ; 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2117979

ABSTRACT

Loss of olfactory function has been commonly reported in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections. Recovery from anosmia is not well understood. Previous studies showed that sustentacular cells, and occasionally, olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) are infected in SARS-CoV-2-infected patients and experimental animals. Here, we show that SARS-CoV-2 infection of sustentacular cells induces inflammation characterized by infiltration of myeloid cells to the olfactory epithelium and variably increased expression of proinflammatory cytokines. We observed widespread damage to, and loss of cilia on, OSNs, accompanied by downregulation of olfactory receptors and signal transduction molecules involved in olfaction. A consequence of OSN dysfunction was a reduction in the number of neurons in the olfactory bulb expressing tyrosine hydroxylase, consistent with reduced synaptic input. Resolution of the infection, inflammation, and olfactory dysfunction occurred over 3-4 weeks following infection in most but not all animals. We also observed similar patterns of OE infection and anosmia/hyposmia in mice infected with other human coronaviruses such as SARS-CoV and MERS-CoV. Together, these results define the downstream effects of sustentacular cell infection and provide insight into olfactory dysfunction in COVID-19-associated anosmia.

5.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: covidwho-1846631

ABSTRACT

The recent emergence of the SARS-CoV-2 Omicron variant of concern (VOC), which contains a heavily mutated spike protein capable of escaping preexisting immunity, identifies a continued need for interventional measures. Molnupiravir (MK-4482), an orally administered nucleoside analog, has demonstrated efficacy against earlier SARS-CoV-2 lineages and was recently approved for SARS-CoV-2 infections in high-risk adults. Here, we assessed the efficacy of MK-4482 against the earlier Alpha, Beta, and Delta VOCs and Omicron in the hamster COVID-19 model. Omicron replication and associated lung disease in vehicle-treated hamsters was reduced compared with replication and lung disease associated with earlier VOCs. MK-4482 treatment inhibited virus replication in the lungs of hamsters infected with Alpha, Beta, or Delta VOCs. Importantly, MK-4482 profoundly inhibited virus replication in the upper and lower respiratory tract of hamsters infected with the Omicron VOC. Consistent with its mutagenic mechanism, MK-4482 treatment had a more pronounced inhibitory effect on infectious titers compared with viral RNA genome load. Histopathologic analysis showed that MK-4482 treatment caused a concomitant reduction in the level of lung disease and viral antigen load in infected hamsters across all VOCs examined. Together, our data indicate the potential of MK-4482 as an effective antiviral against known SARS-CoV-2 VOCs, especially Omicron, and likely future SARS-CoV-2 variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Cricetinae , Cytidine/analogs & derivatives , Humans , Hydroxylamines
6.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: covidwho-1816975

ABSTRACT

Secondary infections are frequent complications of viral respiratory infections, but the potential consequence of SARS-CoV-2 coinfection with common pulmonary pathogens is poorly understood. We report that coinfection of human ACE2-transgenic mice with sublethal doses of SARS-CoV-2 and Streptococcus pneumoniae results in synergistic lung inflammation and lethality. Mortality was observed regardless of whether SARS-CoV-2 challenge occurred before or after establishment of sublethal pneumococcal infection. Increased bacterial levels following coinfection were associated with alveolar macrophage depletion, and treatment with murine GM-CSF reduced numbers of lung bacteria and pathology and partially protected from death. However, therapeutic targeting of IFNs, an approach that is effective against influenza coinfections, failed to increase survival. Combined vaccination against both SARS-CoV-2 and pneumococci resulted in 100% protection against subsequent coinfection. The results indicate that when seasonal respiratory infections return to prepandemic levels, they could lead to an increased incidence of lethal COVID-19 superinfections, especially among the unvaccinated population.


Subject(s)
COVID-19 , Coinfection , Animals , COVID-19/prevention & control , Mice , Mice, Transgenic , SARS-CoV-2 , Streptococcus pneumoniae , Vaccination
7.
Cell Rep ; 39(3): 110714, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1773158

ABSTRACT

The human immunological mechanisms defining the clinical outcome of SARS-CoV-2 infection remain elusive. This knowledge gap is mostly driven by the lack of appropriate experimental platforms recapitulating human immune responses in a controlled human lung environment. Here, we report a mouse model (i.e., HNFL mice) co-engrafted with human fetal lung xenografts (fLX) and a myeloid-enhanced human immune system to identify cellular and molecular correlates of lung protection during SARS-CoV-2 infection. Unlike mice solely engrafted with human fLX, HNFL mice are protected against infection, severe inflammation, and histopathological phenotypes. Lung tissue protection from infection and severe histopathology associates with macrophage infiltration and differentiation and the upregulation of a macrophage-enriched signature composed of 11 specific genes mainly associated with the type I interferon signaling pathway. Our work highlights the HNFL model as a transformative platform to investigate, in controlled experimental settings, human myeloid immune mechanisms governing lung tissue protection during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Animals , COVID-19/genetics , Disease Models, Animal , Humans , Immunity, Innate , Lung/pathology , Macrophages , Mice , SARS-CoV-2
8.
J Med Virol ; 94(8): 3605-3612, 2022 08.
Article in English | MEDLINE | ID: covidwho-1767361

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the causative agent of the current coronavirus disease 2019 pandemic. Development of animal models that parallel the clinical and pathologic features of disease are highly essential to understanding the pathogenesis of SARS-CoV-2 infection and the development of therapeutics and prophylactics. Several mouse models that express the human angiotensin converting enzyme 2 (hACE2) have been created, including transgenic and knock-in strains, and viral vector-mediated delivery of hACE2. However, the comparative pathology of these mouse models infected with SARS-CoV-2 are unknown. Here, we perform systematic comparisons of the mouse models including K18-hACE2 mice, KI-hACE2 mice, Ad5-hACE2 mice and CAG-hACE2 mice, which revealed differences in the distribution of lesions and the characteristics of pneumonia induced. Based on these observations, the hACE2 mouse models meet different needs of SARS-CoV-2 researches. The similarities or differences among the model-specific pathologies may help in better understanding the pathogenic process of SARS-CoV-2 infection and aiding in the development of effective medications and prophylactic treatments for SARS-CoV-2.


Subject(s)
COVID-19 , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Pandemics , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2
9.
2021 International Conference on Biomedical Ontologies, ICBO 2021 ; 3073:137-140, 2021.
Article in English | Scopus | ID: covidwho-1696287

ABSTRACT

Through the course of the COVID-19 pandemic a wide array of signs and symptoms displayed by patients have been identified. Mouse models of COVID-19 display phenotypes that correlate to many of these signs and symptoms. To capture the phenotypes of these mouse models in the Mouse Genome Informatics database the Mammalian Phenotype (MP) ontology was reviewed to map these symptoms to existing MP terms and add new terms where needed. This review identified over 350 COVID-19 signs and symptoms and resulted in the addition of 127 new MP terms. © 2021 Copyright for this paper by its authors.

10.
JCI Insight ; 5(19)2020 10 02.
Article in English | MEDLINE | ID: covidwho-1388620

ABSTRACT

The emergence of SARS-CoV-2 has created an international health crisis, and small animal models mirroring SARS-CoV-2 human disease are essential for medical countermeasure (MCM) development. Mice are refractory to SARS-CoV-2 infection owing to low-affinity binding to the murine angiotensin-converting enzyme 2 (ACE2) protein. Here, we evaluated the pathogenesis of SARS-CoV-2 in male and female mice expressing the human ACE2 gene under the control of the keratin 18 promoter (K18). In contrast to nontransgenic mice, intranasal exposure of K18-hACE2 animals to 2 different doses of SARS-CoV-2 resulted in acute disease, including weight loss, lung injury, brain infection, and lethality. Vasculitis was the most prominent finding in the lungs of infected mice. Transcriptomic analysis from lungs of infected animals showed increases in transcripts involved in lung injury and inflammatory cytokines. In the low-dose challenge groups, there was a survival advantage in the female mice, with 60% surviving infection, whereas all male mice succumbed to disease. Male mice that succumbed to disease had higher levels of inflammatory transcripts compared with female mice. To our knowledge, this is the first highly lethal murine infection model for SARS-CoV-2 and should be valuable for the study of SARS-CoV-2 pathogenesis and for the assessment of MCMs.


Subject(s)
Cause of Death , Coronavirus Infections/pathology , Disease Progression , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , Severe Acute Respiratory Syndrome/pathology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Coronavirus Infections/physiopathology , Disease Models, Animal , Female , Humans , Lung/pathology , Male , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/physiopathology , Severe Acute Respiratory Syndrome/physiopathology , Severity of Illness Index , Survival Rate , Virus Replication/genetics
11.
JCI Insight ; 6(19)2021 10 08.
Article in English | MEDLINE | ID: covidwho-1379698

ABSTRACT

COVID-19, caused by SARS-CoV-2, has spread worldwide with dire consequences. To urgently investigate the pathogenicity of COVID-19 and develop vaccines and therapeutics, animal models that are highly susceptible to SARS-CoV-2 infection are needed. In the present study, we established an animal model highly susceptible to SARS-CoV-2 via the intratracheal tract infection in CAG promoter-driven human angiotensin-converting enzyme 2-transgenic (CAG-hACE2) mice. The CAG-hACE2 mice showed several severe symptoms of SARS-CoV-2 infection, with definitive weight loss and subsequent death. Acute lung injury with elevated cytokine and chemokine levels was observed at an early stage of infection in CAG-hACE2 mice infected with SARS-CoV-2. Analysis of the hACE2 gene in CAG-hACE2 mice revealed that more than 15 copies of hACE2 genes were integrated in tandem into the mouse genome, supporting the high susceptibility to SARS-CoV-2. In the developed model, immunization with viral antigen or injection of plasma from immunized mice prevented body weight loss and lethality due to infection with SARS-CoV-2. These results indicate that a highly susceptible model of SARS-CoV-2 infection in CAG-hACE2 mice via the intratracheal tract is suitable for evaluating vaccines and therapeutic medicines.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Animals , COVID-19/pathology , Disease Models, Animal , Disease Susceptibility , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic , SARS-CoV-2/isolation & purification
12.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1346496

ABSTRACT

qRT-PCR still remains the most widely used method for quantifying gene expression levels, although newer technologies such as next generation sequencing are becoming increasingly popular. A critical, yet often underappreciated, problem when analysing qRT-PCR data is the selection of suitable reference genes. This problem is compounded in situations where up to 25% of all genes may change (e.g., due to leukocyte invasion), as is typically the case in ARDS. Here, we examined 11 widely used reference genes for their suitability in commonly used models of acute lung injury (ALI): ventilator-induced lung injury (VILI), in vivo and ex vivo, lipopolysaccharide plus mechanical ventilation (MV), and hydrochloric acid plus MV. The stability of reference gene expression was determined using the NormFinder, BestKeeper, and geNorm algorithms. We then proceeded with the geNorm results because this is the only algorithm that provides the number of reference genes required to achieve normalisation. We chose interleukin-6 (Il-6) and C-X-C motif ligand 1 (Cxcl-1) as the genes of interest to analyse and demonstrate the impact of inappropriate normalisation. Reference gene stability differed between the ALI models and even within the subgroup of VILI models, no common reference gene index (RGI) could be determined. NormFinder, BestKeeper, and geNorm produced slightly different, but comparable results. Inappropriate normalisation of Il-6 and Cxcl1 gene expression resulted in significant misinterpretation in all four ALI settings. In conclusion, choosing an inappropriate normalisation strategy can introduce different kinds of bias such as gain or loss as well as under- or overestimation of effects, affecting the interpretation of gene expression data.


Subject(s)
Acute Lung Injury/genetics , Algorithms , Disease Models, Animal , Gene Expression Profiling/standards , Gene Expression Regulation , Genetic Markers , Acute Lung Injury/pathology , Animals , Female , Mice , Reference Standards
13.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: covidwho-1223641

ABSTRACT

Mice are normally unaffected by SARS coronavirus 2 (SARS-CoV-2) infection since the virus does not bind effectively to the murine version of the angiotensin-converting enzyme 2 (ACE2) receptor molecule. Here, we report that induced mild pulmonary morbidities rendered SARS-CoV-2-refractive CD-1 mice susceptible to this virus. Specifically, SARS-CoV-2 infection after application of low doses of the acute lung injury stimulants bleomycin or ricin caused severe disease in CD-1 mice, manifested by sustained body weight loss and mortality rates greater than 50%. Further studies revealed markedly higher levels of viral RNA in the lungs, heart, and serum of low-dose ricin-pretreated mice compared with non-pretreated mice. Furthermore, lung extracts prepared 2-3 days after viral infection contained subgenomic mRNA and virus particles capable of replication only when derived from the pretreated mice. The deleterious effects of SARS-CoV-2 infection were effectively alleviated by passive transfer of polyclonal or monoclonal antibodies generated against the SARS-CoV-2 receptor binding domain (RBD). Thus, viral cell entry in the sensitized mice seems to depend on viral RBD binding, albeit by a mechanism other than the canonical ACE2-mediated uptake route. This unique mode of viral entry, observed over a mildly injured tissue background, may contribute to the exacerbation of coronavirus disease 2019 (COVID-19) pathologies in patients with preexisting morbidities.


Subject(s)
Bleomycin/toxicity , COVID-19/pathology , Lung Injury , Ricin/toxicity , Animals , Chlorocebus aethiops , Comorbidity , Disease Models, Animal , Female , Lung Injury/chemically induced , Lung Injury/virology , Mice , Vero Cells , Virus Attachment , Virus Internalization/drug effects
14.
Biochem Pharmacol ; 188: 114543, 2021 06.
Article in English | MEDLINE | ID: covidwho-1163393

ABSTRACT

INTRODUCTION: There is an urgent need for new animal models of SARS CoV-2 infection to improve research and drug development. This brief commentary examines the deficits of current models and proposes several improved alternates. The existing single transgene mouse models poorly mimic the clinical features of COVID-19; those strains get a milder disease than human COVID-19 disease. Many of the current transgenic models utilize random integration of several copies of single ACE2 transgenes, resulting in unnatural gene expression and exhibit rapid lethality. We suggest preparing precision knock-in of selected human mini genes at the mouse initiation codon and knock-out of the mouse homolog as a better option. Three genes critical for infection are suggested targets, ACE2 (the viral cellular receptor), its co-infection protease TMRPSS2, and the primary antibody clearance receptor FcγRT. To offer the best platform for COVID 19 research, preparation of single, double, and triple humanized combinations offers the researcher the opportunity to better understand the contributions of these receptors, coreceptors to therapeutic efficacy. In addition, we propose to create the humanized strains in the C57BL/6J and BALB/c backgrounds. These two backgrounds are Th1 responders and Th2 responders, respectively, and allow modeling of the variability seen in human pathology including lung pathology and late sequelae of COVID-19 disease (BALB/c). We suggest the need to do a thorough characterization of both the short-term and long-term effects of SAR-CoV-2 infection at the clinical, virologic, histopathologic, hematologic, and immunologic levels. We expect the multiply humanized strains will be superior to the single-gene and multiple-gene-copy transgenic models available to date. These mouse models will represent state-of-the-art tools for investigating mechanisms of COVID-19 pathogenesis and immunity and developing vaccines and drugs.


Subject(s)
Biomedical Research/trends , COVID-19 Drug Treatment , COVID-19/genetics , Disease Models, Animal , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Animals, Genetically Modified , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19 Vaccines/pharmacology , COVID-19 Vaccines/therapeutic use , Drug Development/trends , Humans , Mice , SARS-CoV-2/immunology
15.
Biomedicines ; 8(12)2020 Dec 14.
Article in English | MEDLINE | ID: covidwho-983601

ABSTRACT

Heterotopic ossification is defined as an aberrant formation of bone in extraskeletal soft tissue, for which both genetic and acquired conditions are known. This pathologic process may occur in many different sites such as the skin, subcutaneous tissue, skeletal muscle and fibrous tissue adjacent to joints, ligaments, walls of blood vessels, mesentery and other. The clinical spectrum of this disorder is wide: lesions may range from small foci of ossification to massive deposits of bone throughout the body, typical of the progressive genetically determined conditions such as fibrodysplasia ossificans progressiva, to mention one of the most severe and disabling forms. The ectopic bone formation may be regarded as a failed tissue repair process in response to a variety of triggers and evolving towards bone formation through a multistage differentiation program, with several steps common to different clinical presentations and distinctive features. In this review, we aim at providing a comprehensive view of the genetic and acquired heterotopic ossification disorders by detailing the clinical and molecular features underlying the different human conditions in comparison with the corresponding, currently available mouse models.

16.
Emerg Microbes Infect ; 9(1): 2433-2445, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-872909

ABSTRACT

Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2) [1-3]. Due to amino acid differences between murine and hACE2, inbred mouse strains fail to support high titer viral replication of SARS-CoV-2 virus. Therefore, a number of transgenic and knock-in mouse models, as well as viral vector-mediated hACE2 delivery systems have been developed. Here we compared the K18-hACE2 transgenic model to adenovirus-mediated delivery of hACE2 to the mouse lung. We show that K18-hACE2 mice replicate virus to high titers in the nasal turbinates, lung and brain, with high lethality, and cytokine/chemokine production. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the nasal turbinates and lung, and no clinical signs of infection. The K18-hACE2 model provides a stringent model for testing vaccines and antivirals, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.


Subject(s)
Betacoronavirus/growth & development , Coronavirus Infections/pathology , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , Severe acute respiratory syndrome-related coronavirus/growth & development , Virus Replication/genetics , A549 Cells , Adenoviridae/genetics , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , COVID-19 , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Pandemics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2 , Vero Cells , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL